

Clustering Short Text Using Ncut-weighted Non-negative Matrix Factorization

Xiaohui Yan¹, Jiafeng Guo¹, Shenghua Liu¹, Xueqi Cheng¹, Yanfeng Wang² ¹Institute of Computing Technology, Chinese Academy of Sciences, ²Sogou Inc. yanxiaohui@software.ict.ac.cn, {guojiafeng,liushenghua,cxq}@ict.ac.cn,wangyanfeng@sogou-inc.com

1. BACKGROUND

Documents Clustering by NMF

Non-negative matrix factorization (NMF) is a widely used document clustering method[Xu 2003], which decomopses the term-document matrix \boldsymbol{X} into to low-rank non-negative matrices.

$$\min_{U \ge 0, V \ge 0} J(U, V) = ||X - UV||^2$$

- X: each column represent a document via terms
- U: each column represent a topic via terms V: each coumen represent a document via topics

term-topic matrix topic-doc matrix

Term Weighting in NMF

- Term weighting in term-doc matrix X is important for NMF
 - . ⇒ Different representations of documents λ will result in different factorized matrices U
- tfidf is the most common term weighting

$$\begin{aligned} &t f i d f_{t,d} = t f_{t,d} \times i d f_t \\ &i d f_t = \log \frac{N}{d f_t} \end{aligned}$$

- In a ducment, a term is more important/
- discriminative
- » if it occurs less in other documents

is if it occurs more often in the document

2. PROBLEM

Short Text

- Short texts are prevalent on the web
 - nicroblogs 🗠 ⊗ SNS statuses
- nstant messages
- » Short text clustering is important for various applications
- emerging topics discovery ne efficient index and retrieval personalized

Problems of tfidf on Short Text

- most of terms usually occur only once in a short document

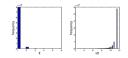


Figure 1: Frequency of (a) tf values, (b) idf values of terms in Tweets data set

3. OUR APPROACH

Ncut on Term Affinity Graph

- Consider a term affinity graph with adjacent matrix S = XX^T, clustering terms is quivalents to cut graph G into K sub-graphs.
- A typical criterion to do that is called the normalized cut(Ncut) criterion, can be represented by the following trace maximization problem[Yu 2003]:

$$\max_{U} Tr(U^{T}D^{-1/2}SD^{-1/2}U), \quad (4)$$

D is the diagonal degree matrix of S

$$u_{ik} = \begin{cases} \frac{\sqrt{d_{ii}}}{\sqrt{S(G_k,G)}} & t_i \in G_k \\ 0 & otherwise \end{cases}.$$

Ncut-weighted NMF

Theorem 1 suggest a new a term weighting matrix for matrix **X**: **D**¹², i.e. the weight of term i is

$$w_i = d_{ii}^{-1/2} = (\sum_{i=1}^{M} s_{i,j})^{-1/2}$$

- A term is more important/ discriminative
- ⇒ if it occurs less often in the corpus vo if it co-occurs less with other terms
- Ncut-weighted NMF
 - $\min_{U \geq 0, U \geq 0} J(U, V) = ||Y UV||^2 + \lambda(||U||^2 + ||V||^2)$

4. EXPERIMENTS

Data Sets

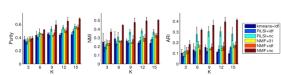
- Data sets > Tweets, collected from twitter.com
 - » Titles, news titles with assigned class labels from some news websites, which is published by Sogou Lab

Table 1: Description of the data sets							
Data sets	#doc	#word	avg words†	#class			
Tweets	4520	2502	8.5958	unavailable			
Titles	2630	1403	5.2684	9			

Comparison Ncut-weight with idf

- the Ncut-weight counts the term cooccurrence frequency instead of the
 - document frequency Figure 2 shows Ncut-weights does not have the problem of skew to high values in short texts
 Case study in Table 2 shows Ncut-weights confuse to temp! discrimination.
 - weights captures terms' discriminative power better

5. CLUSTERING EVALUATION



Comparison of (a)Purity, (b)NMI, (c)ARI w.r.t the cluster number k on Titles data

Methods	Kmeans+idf	RLSI+idf	RLSI+nc	NMF+01	NMF+idf	NMF+nc
	egyptian	president	president	egypt	egyptian	egyptian
cluster1:	egypt	egyptian	mubarak	egyptian	egypt	cairo
egyptian	mubarak	mubarak	egyptian	mubarak	mubarak	mubarak
unrest†	cairo	cairo	cairo	president	president	president
	protest	party	hosni	cairo	protester	protester
	player	market	market	market	market	market
cluster2:	deal	sale	business	report	business	business
market	market	plan	report	social	social	company
	review	business	medium	medium	medium	website
	press	party	social	online	company	social
	super	february	temperature	wind	wind	temperature
cluster3:	bowl	weather	humidity	humidity	humidity	humidity
	wind	temperature	barometer	rain	temperature	wind
	humidity	issue	hpa	temperature	rain	barometer
	temperature	humidity	mais	mph	mph	hpa
cluster4:	green	buy	bowl	green	green	bowl
football	bay	super	super	bay	bay	super
	packer	bowl	packer	packer	packer	packer
	super	party	bay	red	steelers	bay
	bowl	fan	xlv	yellow	pittsburgh	xlv

6. CONCLUSIONS

Conclusions