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Abstract—Short texts are popular on today’s Web, especially with the emergence of social media. Inferring topics from large
scale short texts becomes a critical but challenging task for many content analysis tasks. Conventional topic models such as
latent Dirichlet allocation (LDA) and probabilistic latent semantic analysis (PLSA) learn topics from document-level word co-
occurrences by modeling each document as a mixture of topics, whose inference suffers from the sparsity of word co-occurrence
patterns in short texts. In this paper, we propose a novel way for short text topic modeling, referred as biterm topic model (BTM).
BTM learns topics by directly modeling the generation of word co-occurrence patterns (i.e., biterms) in the corpus, making the
inference effective with the rich corpus-level information. To cope with large scale short text data, we further introduce two online
algorithms for BTM for efficient topic learning. Experiments on real-word short text collections show that BTM can discover more
prominent and coherent topics, and significantly outperform the state-of-the-art baselines. We also demonstrate the appealing
performance of the two online BTM algorithms on both time efficiency and topic learning.

Index Terms—Short Text, Topic Model, Biterm, Online Algorithm, Content Analysis
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1 INTRODUCTION

Short texts are prevalent on the Web, no matter
in traditional Web sites, e.g., Web page titles, text
advertisements and image captions, or in emerging
social media, e.g., tweets, status messages, and ques-
tions in Q&A websites. Unlike traditional normal
texts (e.g., news articles and academic papers), short
texts, as indicated by the name, typically only include
a few words. With the emerging large scale short
text datasets, inferring the latent topics from them
is important for a wide range of content analysis
applications, such as content characterizing [1], [2],
[3], user interest profiling [4], and emerging topic
detecting [5].

The sparsity of content in short texts brings new
challenges to topic modeling. Conventional topic
models, such as PLSA [6] and LDA [7], posit that
a document is a mixture of topics, where a topic is
considered to convey some semantic by a set of corre-
lated words, typically represented as a distribution of
words over the vocabulary. Statistical techniques are
then utilized to learn the topic components (i.e., topic-
word distributions) and mixture coefficients (i.e., topic
proportions) of each document. In essence, conven-
tional topic models reveal topics within a text corpus
by implicitly capturing the document-level word co-
occurrence patterns [8], [9]. Therefore, directly apply-
ing these models on short texts will suffer from the
severe data sparsity problem (i.e., the sparse word
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co-occurrence patterns in individual document) [10].
On one hand, the frequency of words in individual
short text play less discriminative role than lengthy
text, making it hard to infer which words are more
correlated in each document [10]. On the other hand,
the limited contexts make it more difficult to identify
the senses of ambiguous words in short texts.

A simple solution to alleviate the sparsity prob-
lem is to aggregate short texts into lengthy pseudo-
documents before training a standard topic model. For
example, Weng et al. [4] aggregated the tweets pub-
lished by individual user into one document before
training LDA. Besides the user-based aggregation,
Hong et al. [10] also aggregated the tweets containing
the same word, and showed that topic models trained
on these aggregated messages work better than the
conventional LDA. However, the effectiveness of such
heuristic methods is heavily data-dependent. For ex-
ample, user information may not be available in some
datasets, such as advertisement data. Even if user in-
formation is available, e.g., in tweets data, most users
only have few tweets that makes the aggregation less
effective.

Another way to deal with the problem is to simplify
the topic models by adding strong assumptions on
short texts. For example, Zhao et al. [2] and Lakkaraju
et al. [11] modeled each tweet in the way of mixture of
unigrams [12], which assumes a document as a bag
of words drawn independently from a single topic.
Similar approach can be found in [13], which assumes
words in each sentence share a same topic. Although
these assumptions may help alleviate the data sparsity
problem by simplifying the models, they sacrifice the
flexibility to capture multiple topic ingredients in a
document. Moreover, they tend to result in peaked
posteriors of topics in a document, which makes the
model susceptible to overfitting [7].
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Unlike these approaches, in this paper, we propose
a novel topic model for short texts. The main idea
comes from the answers to the following two ques-
tions. 1) Since topics are basically groups of correlated
words and the correlation is revealed by word co-
occurrence patterns in documents, why not explicitly
model the word co-occurrence for topic learning? 2)
Since topic models on short texts suffer from the
problem of severe sparse patterns in individual short
document, why not use the rich global word co-
occurrence patterns for better revealing topics?

To address these questions, we propose a generative
biterm topic model (BTM), which learns topics over
short texts by directly modeling the generation of
biterms in the whole corpus. Here, a biterm is an
unordered word-pair co-occurring in a short context
(e.g., a small, fixed-size window over a term sequence
within a document). BTM posits that the two words in
a biterm share the same topic drawn from a mixture
of topics over the whole corpus. Here a topic is also
represented as a word distribution as conventional
topic models. Compared to conventional topic mod-
els, the major differences and advantages of BTM
lie in that 1) BTM models the word co-occurrence
patterns (i.e., biterms) explicitly, rather than implicitly
(via document modeling), to enhance topic learning;
and 2) BTM uses the aggregated word co-occurrence
patterns in the corpus for topic discovering, which
avoids the problem of sparse patterns at document-
level.

The parameters of BTM can be efficiently estimated
by typical algorithms for latent class models, such as
Gibbs sampling [14] and variational Bayes [15]. By
learning BTM, we can obtain the topic components
and a global topic distribution over the corpus, except
the topic proportions of individual documents since
BTM does not model the document generation pro-
cess. However, we show that the document-specific
topic proportions can be naturally derived based on
the learned model in an efficient way.

Another critical issue in short text topic modeling
is the scalability of the inference algorithms. As there
are millions or even billions of short texts emerging
every day, e.g., Twitter tweets or Facebook status
messages, developing algorithms that can scale to
such massive stream data is a non-trivial problem.
Hence, we introduce two online algorithms for BTM,
namely online BTM (oBTM) and incremental BTM
(iBTM), to speed up the inference of BTM on large
datasets. The advantage of the online algorithms is
that they only need to store a small fraction of data on
the fly for model update, which saves both time and
memory cost. Specifically, oBTM runs a batch Gibbs
sampler over the biterms in a time slice (e.g., a day)
conditioning on the statistics of samples collected in
previous time slices, while iBTM updates the model
parameters instantly as long as a new biterm is ob-
served.

To measure the performance of BTM, we conducted
extensive experiments on three real-world short text
collections, i.e., two medium-sized datasets from Twit-
ter and a Q&A website, and a much larger Weibo1

collection including more than 150 million documents
and 9 million distinct terms. Experimental results
show that 1) BTM can discover more prominent
and coherent topics than the state-of-the-art competi-
tors [10]. When applying the learned topic propor-
tions of documents in short text classification task,
we also found that BTM can infer significantly better
topic proportions than the baselines. 2) Compared to
the batch BTM, the two online algorithms of BTM
are much more efficient and comparably effective.
Moreover, they substantially outperform the online
LDA proposed by Canni et al. [16] in terms of effec-
tiveness. Besides, we also show the online algorithms
are capable of capturing the evolution of topics in
short text streams.

The rest of the paper is organized as follows. In Sec-
tion 2, we give a brief survey of related work. Section
3 introduces our model for short text topic modeling,
and we discuss its batch implementation in Section 4.
Section 5 shows how to infer the topics of a document,
and Section 6 presents the two online algorithms for
BTM. Experimental results are presented in Section 7.
Finally, conclusions are made in the last section.

2 RELATED WORK

In this section, we briefly summarize the related work
from the following two perspectives: topic models on
normal texts, and that on short texts.

2.1 Topic Models on Normal texts
Topic models are widely used to uncover the latent
semantic structure from text corpus. The effort of min-
ing the semantic structure in a text collection can be
dated from latent semantic analysis (LSA) [17], which
employs the singular value decomposition to project
documents into a lower dimensional space, called
latent semantic space. Probabilistic latent semantic
analysis (PLSA) [6] improves LSA with a sound prob-
abilistic model based on a mixture decomposition de-
rived from a latent class model. In PLSA, a document
is represented as a mixture of topics, while a topic is a
probability distribution over words. Extending PLSA,
Latent Dirichlet Allocation (LDA) [7] adds Dirichlet
priors for the document-specific topic mixtures, mak-
ing it possible to generate unseen documents. Due to
its nice generalization ability and extensibility, LDA
has achieved huge success in text mining.

In the last decade, topic models have been exten-
sively studied. Many complicated variants and exten-
sions of the standard LDA model have been proposed,
which can be found in the comprehensive survey [18].

1. Weibo.com is a popular microblog website in China.
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Here we only list some work closely related to us.
Wallach [19] proposed the bigram topic model ex-
tending LDA by incorporating bigram statistics into
topic modeling, but its detail is quite different from
ours. The bigram topic model aims to capture ordinal
dependencies between words (in normal texts) by
exploiting document-level sequential patterns, while
our model is designed specifically for short texts and
tries to capture the semantic dependencies between
words by exploiting corpus-level word co-occurrence
patterns. Besides, two recently proposed models, i.e.,
the regularized topic model [20] and the generalized
Pólya model [21], share the same idea of utilizing
word co-occurrence (i.e., biterm) statistics to enhance
topic learning. However, both of them only use word
co-occurrence information as prior to guide the gen-
eration of words, rather than directly modeling the
co-occurrences. Above all, all these models only deal
with normal texts without considering the specificity
of short texts.

2.2 Topic Models on Short Texts

Early studies mainly focused on exploiting external
knowledge to enrich the representation of short texts.
For example, Phan et al.[22] inferred the topics of
short texts based on a conventional topic model es-
timated on another large scale dataset for short text
classification. Jin et al.[23] proposed a model based
on LDA that jointly learns topics over short texts
and related long texts. It is expected to leverage the
topical knowledge learned from long texts to help the
topic learning task over short texts. However, these
methods are only effective when the auxiliary data
are closely related to the original data. Sometimes,
finding such auxiliary data may be expensive or even
impossible. In contrast, our model only relies on
statistics of word co-occurrences within the corpus,
which is complementary to the above ones. Hence, it
is promising to combine them together in future work.

With the emergence of social media in recent years,
topic models have been utilized for social media con-
tent analysis in various tasks, such as content charac-
terizing [1], [2], event tracking [5], content recommen-
dation [24], [25], and influential users prediction [4].
However, due to the lack of specific topic models for
short texts, some researchers directly applied conven-
tional (or slightly modified) topic models [1], [26].
Some others tried to aggregate short texts into lengthy
pseudo-documents based on some additional infor-
mation, and then train conventional topic models [4],
[2]. Hong et al. [10] made a comprehensive empirical
study of topic modeling in Twitter, and suggested that
new topic models for short texts are in demand.

In our previous works, we found the global word
co-occurrences is helpful for short text clustering [27]
and topic learning [28], [29]. This paper extends our
previous conference article [29] with the following

improvements. 1) We introduce two online algorithms
for BTM to handle large scale datasets. 2) The capabil-
ity of the two online algorithms is empirically verified.
3) More comprehensive experiments were conducted,
and new findings are reported.

3 BITERM TOPIC MODEL

In most topic models, topics are represented as groups
of correlated words with the correlation basically re-
vealed by word co-occurrence patterns in documents.
For example, once observing the words “ipad” and
“iphone” frequently co-occurring with each other, one
can tell that they have close senses and possibly
belong to a same topic, even though he/she doesn’t
know the exact meaning of them. Conventional topic
models exploit word co-occurrence patterns to re-
veal the latent semantic structure of a corpus in an
implicit way by modeling the generation of words
in each document. These approaches are sensitive
to the shortness of documents since the word co-
occurrence patterns in a single short document are
sparse and not reliable. Instead, if we aggregate all
the word co-occurrence patterns in the corpus, their
frequencies are more stable and more clearly reveals
the correlation between the words. With this idea,
we developed the biterm topic model, which takes
a novel way to reveal the latent topic components in
a corpus by directly modeling the generation of word
co-occurrence patterns.

3.1 Biterm Extraction
Before we detail the model, we first introduce the
notation of “biterm”, which denotes an unordered
word pair co-occurring in a short context (i.e., an
instance of word co-occurrence pattern). Here a short
context refers to a small, fixed-size window over a
term sequence. In short texts with limited document
length, such as tweets and text messages, we can sim-
ply take each document as an individual context unit.
In such case, any two distinct words in a document
construct a biterm. For example, a document with
three distinct words will generate three biterms:

(w1, w2, w3) ⇒ {(w1, w2), (w2, w3), (w1, w3)},

where (·, ·) is unordered. After extracting biterms in
each document, the whole corpus now turns into
a biterm set. The biterm extraction process can be
completed via a single scan over the documents.

3.2 Model Description
Unlike most topic models that learn the latent topic
components in a corpus by modeling the generate
of documents, BTM performs this task by modeling
the generation of biterms. The key idea is that if two
words co-occur more frequently, they are more likely
to belong to a same topic. Based on this idea, we
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Fig. 1. Graphical representation of (a) LDA, (b) mixture of unigrams, and (c) BTM. Each node in the graph
denotes a random variable, where shading represents an observed variable. A plate denote replication of the
model within it. The number of replicates is given in the bottom right corner of the plate.

assume that the two words in a biterm are drawn
independently from a topic , where a topic is sampled
from a topic mixture over the whole corpus.

Given a corpus with ND documents, suppose it
contains NB biterms B={bi}NB

i=1 with bi=(wi,1, wi,2),
and K topics expressed over W unique words in the
vocabulary. Let z∈ [1,K] be a topic indicator variable,
we can represent the prevalence of topics in the
corpus (i.e., P (z)) by a K-dimensional multinomial
distribution θ = {θk}Kk=1 with θk = P (z = k) and∑K

k=1 θk = 1. The word distribution for topics (i.e.,
P (w|z)) can be represented by a K ×W matrix Φ
where the kth row ϕk is a W -dimensional multino-
mial distribution with entry ϕk,w = P (w|z = k) and∑W

w=1 ϕk,w = 1.
Following the convention of LDA [30], we use sym-

metric Dirichlet priors for θ and ϕk with single-valued
hyper-parameters α and β, respectively. Formally, the
generative process of BTM is described as follows.

1) Draw θ ∼ Dirichlet(α)
2) For each topic k ∈ [1,K]

a) draw ϕk ∼ Dirichlet(β)

3) For each biterm bi ∈ B

a) draw zi ∼ Multinomial(θ)
b) draw wi,1, wi,2 ∼ Multinomial(ϕzi)

Its graphical representation is shown in Figure 1(c).
Note that we assume that the biterms are generated
independently for simplicity.

Following the above procedure, we can write the
probability of biterm bi conditioned on the model
parameters θ and Φ:

P (bi|θ,Φ) =
K∑

k=1

P (wi,1, wi,2, zi = k|θ,Φ).

=

K∑
k=1

P (zi = k|θk)P (wi,1|zi = k, ϕk,wi,1) ·

P (wi,2|zi = k, ϕk,wi,2)

=
K∑

k=1

θkϕk,wi,1ϕk,wi,2 (1)

Given the hyperparameters α and β, we can obtain

the probability of bi by integrating over θ and Φ:

P (bi|α, β) =
∫ ∫ K∑

k=1

θkϕk,wi,1
ϕk,wi,2

dθdΦ (2)

Taking the product of the probability of single biterms,
we obtain the likelihood of the whole corpus:

P (B|α, β) =
NB∏
i=1

∫ ∫ K∑
k=1

θkϕk,wi,1ϕk,wi,2dθdΦ (3)

3.3 Model Comparison
For better understanding the uniqueness of BTM, we
compare it with two typical models for topic learning,
i.e., LDA [7] and mixture of unigrams [12]. In litera-
ture, both LDA and mixture of unigram have been
employed for topic discovering over short texts [1],
[2], [31], [26]. Figure 1 shows the graphical represen-
tation of the three models.

LDA, illustrated in Figure 1(a), models the gener-
ation of a document d as follows: For each word in
d, we first draw a topic z from the document-specific
topic distribution θd, then draw a word w from topic
z. From this figure, we can see that the topic z of word
w depends on the other words in the same document
through sharing the topic distribution θd. Hence, LDA
excessively relies on the document-level context for
the inference of z and θd. It makes LDA susceptible
to the data sparsity problem when documents are
short, resulting in poor estimation of z and θd, in turn,
hurting the learning of the topic-word distributions Φ.

Mixture of unigrams, illustrated in Figure 1(b), also
models the generation of each document, but in a
different way. It assumes that all the words in a
document share a same topic z, while z is sampled
from a global topic distribution θ. In other words, it
models the whole corpus, rather than a document, as
a mixture of topics. By Leveraging the information of
the whole corpus, it alleviates the sparsity problem
in topic inference over short texts. However, the con-
straint that a document has a single topic is too strict
(as we know that even a short document may contain
multiple topics), which prevents it from modeling fine
topics in documents.
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In a word, the major trouble of LDA and mixture
of unigrams lies in modeling the short documents
improperly. For such extremely sparse data, it is dif-
ficult to directly model and infer the latent topics in
single short documents. However, we argue that it is
not necessary to model documents for topic discov-
ering in a corpus. BTM, illustrated in Figure 1(c), just
chooses another way to discover topics by modeling
the generation of biterms, rather than documents.
Compared to LDA, BTM avoids the data sparsity
problem by learning a global topic distribution θ, as
mixture of unigrams does. Meanwhile, by breaking
each document into biterms, and assigning a topic for
every biterm, BTM allows a document (with multiple
biterms) be able to exhibit multiple topics, which
surmounts the defect of mixture of unigrams.

4 PARAMETER ESTIMATION

In this section, we describe the algorithm to estimate
the parameters {Φ,θ} in BTM, and compare its com-
plexity with LDA.

4.1 Gibbs Sampling Algorithm

Similar to LDA, it is intractable to exactly solve the
coupled parameters θ and Φ by maximizing the like-
lihood in Eq. (3). Following [30], we conduct approxi-
mate inference for θ and Φ using Gibbs sampling [14],
which estimates the parameters using samples drawn
from the posterior distributions of latent variables
sequentially conditioned on the current values of all
other variables and the data.

In the setting of BTM, there are three types of vari-
ables (i.e., the topic assignments of z, the multinomial
distribution parameters Φ and θ) to be estimated. But
using the technique of collapsed Gibbs sampling [32],
Φ and θ can be integrated out due to the use of
conjugate priors. Thus, for biterm bi, we only need
to sample its topic zi according the following condi-
tional distribution (the derivation is provided in the
supplemental material):

P (zi= k|z−i,B)∝(n−i,k+α)
(n−i,wi,1|k + β)(n−i,wi,2|k + β)

(n−i,·|k+Wβ+1)(n−i,·|k+Wβ)
,

(4)
where z−i denotes the topic assignments for all
biterms except bi, n−i,k is the number of biterms
assigned to topic k excluding bi, n−i,w|k is the number
of times word w assigned to topic k excluding bi, and
n−i,·|k =

∑W
w=1 n−i,w|k. The right hand of Eq. (4) is

quite intuitive: the first factor is proportional to the
probability of topic k in the corpus, and the second
part expresses the product of the probabilities of wi,1

and wi,2 under topic k.
We summarize the overall procedure of Gibbs sam-

pling in Algorithm 1. Firstly, we randomly assign
a topic to each biterm as the initial state. In each
iteration, we update the topic assignment for each

Algorithm 1: Gibbs sampling algorithm for BTM
Input: topic number K, α and β, biterm set B
Output: Φ, θ
Randomly initialize the topic assignments for all the biterms
for iter = 1 to Niter do

foreach biterm bi = (wi,1, wi,2) ∈ B do
Draw topic k from P (zi|z−i,B)
Update nk , nwi,1|k , and nwi,2|k

Compute Φ by Eq. (5) and θ by Eq. (6)

TABLE 1
Time complexity and the number of in-memory

variables in LDA and BTM

method time complexity #in-memory variables
LDA O(NiterKND l̄) NDK +WK +NDl
BTM O(NiterKND l̄(l̄ − 1)/2) K +WK +ND l̄(l̄− 1)/2

biterm by examining Eq. (4) sequentially. After a
sufficient number of iterations, we count the number
of biterms in each topic k, denoting by nk, and the
number of times that each word w assigned to topic
k, denoting by nw|k. These counts are used to estimate
Φ and θ as follows (the derivation is presented in the
supplemental material):

ϕk,w =
nw|k + β

n·|k +Wβ
, (5)

θk =
nk + α

NB +Kα
. (6)

4.2 Complexity Analysis
We now compare the running time and memory
requirement of the Gibbs sampling algorithm of BTM
with LDA. We list the time complexity and the num-
ber of in-memory variables in the Gibbs sampling
procedure of LDA and BTM in Table 1, where l̄ denote
the average number of words.

In detail, the major time consuming part in the
two algorithms is the calculation of conditional prob-
ability for topic assignment, which requires O(K)
time. Remember that LDA draws a topic for each
word occurrence, giving an overall time complexity
O(NiterKND l̄). Instead, BTM draws a topic for each
biterm, with the total time complexity O(NiterKNB).
Note that a document with l̄ distinct words will
generate l(l − 1)/2 biterms, we roughly have2

NB ≈ ND l̄(l̄ − 1)

2
.

We can see the time complexity of BTM is about (l̄−
1)/2 times of LDA. For short texts, since the average
length of documents are very small, e.g., l̄ = 5.21 in
the Tweets2011 collection, the run-time of BTM is still
comparable with LDA.

2. Here we simply assume that the documents have almost the
same number of distinct words. It is reasonable for short texts since
the documents are very short.
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In the two Gibbs sampling algorithms, the variables
necessary to be cached are the counts and topic as-
signments. In LDA, we need to maintain the counts
nk|d (the number of words in document d assigned
to topic k), nw|k (the times of word w assigned to
topic k), and the topic assignment for each word
occurrence [33], in total of NDK+WK+NDl variables,
in-memory. In BTM, we need to keep the counts nk,
nw|k, and the topic assignment for each biterm, in
total of K+WK+NB variables, in memory. Compared
with BTM, we can see that the memory cost of LDA
will increase rapidly when ND and K become large,
making it less memory-efficient than BTM. We will
further demonstrate it in the Experiment section.

5 INFERRING TOPICS IN A DOCUMENT

Beside learning the topic components (i.e., {ϕk}Kk=1),
another common task in topic models is to infer
the topics in a document, i.e., evaluating the topic
posterior P (z|d) for document d. However, as BTM
does not model documents, we cannot directly obtain
P (z|d) from the estimated model. Fortunately, we can
derive the topic proportion of a document via the
topics of biterms.

Suppose d contains Nd biterms, {b(d)i }Nd
i=1, using the

chain rule we have

P (z|d) =
Nd∑
i=1

P (z, b
(d)
i |d) =

Nd∑
i=1

P (z|b(d)i , d)P (b
(d)
i |d).

(7)
Given biterm b

(d)
i = (w

(d)
i,1 , w

(d)
i,2 ), we assume its topic

z is conditionally independent of d, i.e., P (z|b(d)i , d)=

P (z|b(d)i ). Then, we can simplify the above equation:

P (z|d) =
Nd∑
i=1

P (z|b(d)i )P (b
(d)
i |d). (8)

In Eq. (8), P (z|b(d)i ) can be calculated via Bayes’
formula based on the parameters learned in BTM:

P (z = k|b(d)i ) =
θkϕk,w

(d)
i,1

ϕ
k,w

(d)
i,2∑

k′ θk′ϕ
k′,w

(d)
i,1

ϕ
k′,w

(d)
i,2

(9)

Meanwhile, P (b
(d)
i |d) can be estimated empirically:

P (b
(d)
i |d) = n(b

(d)
i )∑Nd

i=1 n(b
(d)
i )

,

where n(b
(d)
i ) is the frequency of biterm b

(d)
i in d.

6 ONLINE ALGORITHMS FOR BTM
In real-world applications such as microblog, short
texts are often with prohibitively large volume, com-
ing in a stream, and growing rapidly over time. In
such case, the batch algorithm is no longer suitable
for topic learning. First of all, it is impractical to scan
the whole dataset repeatedly due to the limitation

Algorithm 2: Online BTM Algorithm

Input: K,α, β, λ, Biterm sets B(1), ...,B(T )

Output: {Φ(t),θ(t)}Tt=1

Set α(1) = (α, ..., α) and {β(1)
k = (β, ..., β)}Kk=1

for t = 1 to T do
Randomly assign topics to biterms in B(t)

for iter = 1 to Niter do
foreach biterm bi = (wi,1, wi,2) ∈ B(t) do

Draw topic k from Eq. (10)
Update n

(t)
k , n(t)

wi,1|k
, and n

(t)
wi,2|k

Set α(t+1) and {β(t+1)
k }Kk=1 by Eq.(11) and Eq.(12)

Compute Φ(t) by Eq.(5) and θ(t) by Eq.(6)

of memory. Second, it is desired to keep the model
up-to-date when new data arrive continuously. For
these reasons, we introduce two online algorithms for
BTM, referred as online BTM (oBTM) and incremental
BTM (iBTM). The online algorithms only need to
store a small fraction of data on the fly for model
update, which are much more efficient than the batch
algorithm on large scale dataset.

6.1 Online BTM Algorithm (oBTM)
The oBTM algorithm is inspired by the online LDA
algorithm proposed in [34], which assumes docu-
ments are divided by time slices (e.g., a day), and the
documents are exchangeable in a time slice. The main
idea of oBTM is to fit a BTM model over the data in
a time slice t and use the counts in current time slice,
n
(t)
k and n

(t)
w|k, to adjust the Dirichlet hyperparameters

for the next time slice. The overall procedure of oBTM
is outlined in Algorithm 2.

Before running oBTM, we need to transform doc-
uments in time slice t into biterm set B(t). Let α(t)

be the K-dimensional Dirichlet hyperparameters for
θ(t), and β

(t)
k be the W -dimensional Dirichlet hyper-

parameters for ϕ(t)
k . We use symmetric Dirichlet distri-

butions as the initial priors by setting α(1) = (α, ..., α)

and β
(1)
k = (β, ..., β). Given α(t) and {β(t)

k }Kk=1, we
iteratively draw topic assignments for each biterm
bi ∈ B(t) according to the conditional distribution:

P (zi = k|z(t)−i,B
(t),α(t), {β(t)

k }Kk=1) ∝

(n
(t)
−i,k+α

(t)
k )

(n
(t)

−i,wi|k
+β

(t)
k,wi

)(n
(t)

−i,wj |k
+β

(t)
k,wj

)

[
∑W

w=1(n
(t)

−i,w|k+β
(t)
k,w)+1][

∑W
w=1(n

(t)

−i,w|k+β
(t)
k,w)]

,(10)

Once iterations completed, we obtain the counts n(t)
k

and n
(t)
w|k, and utilize them to adjust the hyperparam-

eters α(t+1) and {β(t+1)
k }Kk=1 for time slice t+1 by

setting:

α
(t+1)
k = α

(t)
k + λn

(t)
k , (11)

β
(t+1)
k,w = β

(t)
k,w + λn

(t)
w|k, (12)

where λ ∈ [0, 1] is a decay weight. As stated in [35],
[34], by virtue of the Dirichlet-multinomial conjugate
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Algorithm 3: Incremental BTM Algorithm
Input: K,α, β, Biterm sequence B = {b1, ..., bN}
Output: Φ, θ

for i = 1 to N do
Draw topic k from P (zi|zi−1,Bi)
Update nk and nw|k
Generate rejuvenation sequence R(i)
for j ∈ R(i) do

Draw topic assignment k′ from P (zj |z−j,i,Bi)
Update nk′ and nw|k′

Compute Φ by Eq.(5) and θ by Eq.(6)

property the hyperparameters α
(t)
k and β

(t)
k,w can be

viewed as the counts of prior observations of n
(t)
k

and n
(t)
w|k, respectively. Therefore, Eqs.(11-12) can be

interpreted as taking historical topic assignments as
prior observations for the next time slice. Addition-
ally, the decay weight λ controls the strength of
influence of historical topic assignments. If λ=0, the
models trained in different time slices are completely
independent; If 0<λ<1, the historical influence will
decays exponentially with the number of time slices
passed; If λ=1, the historical counts of topic assign-
ments are simply accumulated without any decay.

By running the batch Gibbs sampler over the data in
each time slice sequentially, oBTM is simple and easy
to be implemented. However, in some applications,
such as real-time topic tracking in microblogs, it is
desired to update the model instantly when new
documents arrive. In such case, oBTM is incompetent.
Hence, we turn to another online algorithm more
appropriate for such tasks.

6.2 Incremental BTM Algorithm (iBTM)
iBTM updates the model continuously, i.e., updating
the parameters Φ and θ immediately whenever a
biterm arrives, via a technique called incremental
Gibbs sampler [16]. In detail, when biterm bi arrives,
iBTM updates the model in two steps. First, we draw
the topic assignment of bi from P (zi|zi−1,Bi), where
zi−1={zj}i−1

j=1 indicates all the previous topic assign-
ments, and Bi={bj}ij=1. Second, we randomly choose
some previous biterms to construct a biterm sequence,
called rejuvenation sequence R(i), to resample their
topic assignments. For each biterm bj ∈ R(i), we
resample its topic assignment zj from P (zj |z−j,i,Bi).
The procedure of iBTM is outlined in Algorithm 3.

A crucial concern of iBTM is how to generate
the rejuvenation sequence R(i). First, the length of
R(i) makes a trade-off between effectiveness and
efficiency. The more biterms rejuvenated, the better
approximation of the posterior distribution P (zi|Bi)
will be achieved. Particularly, if R(i) is set to Bi,
iBTM approaches to the batch BTM algorithm as the
number of biterms increases to infinity, since every
topic assignment will be resampled infinite times.
Second, the choice of R(i) can affect the contribution

TABLE 2
Time complexity and the number of in-memory

variables of batch and online BTM algorithms in time
slice t

method time complexity #in-memory variables
batch BTM O(NiterK|B(1..t)|) K +WK + |B(1..t)|

oBTM O(NiterK|B(t)|) K +WK + |B(t)|
iBTM O(K|B(t)| · |R(i)|) K +WK + L

of biterms received at different time in model up-
date. For instance, one can select entries in R(i) from
decayed distributions (e.g., exponential and inverse
polynomial distributions [36]) over previous biterms
to favor more recent historical data. In this work,
R(i) is generated from a uniform distribution over a
fixed-size sliding window covering the recent biterms.
This approach not only reduces the memory and time
cost by storing a small part of historical data, but
also makes the model more sensitive to the dynamic
changes of topics in data than oBTM, since it updates
the model continuously.

6.3 Complexity Comparison

One major advantage of the online algorithms against
the batch algorithm is that they scale well to massive
datasets, since they only need to store a small fraction
of data for model update. By analyzing the time com-
plexity and memory consumption, we can be more
clear about this. To facilitate comparison, we assume
the corpus is organized with T time slices, and then
estimate the running time and memory requirements
for model update in time slice t.

The batch BTM, which needs to run over all the
biterms observed up to time slice t (i.e., B(1..t) =
B(1)∪...∪B(t)), costs time O(NiterK|B(1..t)|), and has
to record K +WK + |B(1..t)| variables in memory,
where | · | denotes the number of elements in a set.
Instead, oBTM only iteratively runs over the biterm
set B(t) in the current time slice, with time complexity
O(NiterK|B(t)|) and K + WK + |B(t)| variables in
memory. For iBTM, it runs over B(t) in a single pass,
but along with |R(i)| times of resampling for each
biterm. Thus its time complexity is O(K|B(t)| · |R(i)|),
and the number of in-memory variables is K+WK+L,
where L is the length of the sliding window. Note that
L≪|B(1..t)| on large datasets.

Table 2 summarizes the time complexity and mem-
ory consumption of the batch BTM algorithm, oBTM
and iBTM. We can see that the time and memory
cost of the batch BTM algorithm increase linearly as t
grows. In contrary, the two online BTM algorithms
require almost constant time and memory cost to
update the model, since the number of biterms in each
time slice is often stable. Therefore, the two online
algorithms can handle large-scale datasets efficiently
by processing the data incrementally.
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TABLE 3
Summary of the three short text collections.

Dataset Question Tweets2011 Weibo
#doc 189,080 4,230,578 155,617,473

#word 26,565 98,857 187,994
avgDocLen 3.94 5.21 5.87

7 EXPERIMENTS

In this section, we empirically evaluate the effective-
ness and efficiency of BTM, both the batch and online
BTM algorithms.

7.1 Experimental Settings

Datasets. In order to show the effectiveness of our
approach over different short text datasets, we use
three short text collections for evaluation.

• Question collection includes 648,514 questions
crawled from a popular Chinese Q&A website3.
In this collection, each question has a label chosen
from 35 categories by its author.

• Tweets2011 collection is a standard short text col-
lection published in TREC 2011 microblog track4,
which provides approximately 16 million tweets
sampled between January 23rd and February 8th,
2011. Besides its content, each tweet includes a
user id and a timestamp.

• Weibo collection is a subset of microblogs col-
lected from weibo.com between 2011/08/01 and
2012/07/31. The volume of raw data is about
600G.

The raw data of these collections are very noisy.
For preprocessing, we removed meaningless words
such as stop words, low frequency words, and char-
acters not in Latin or Chinese. To filter out low-
quality documents, we removed duplicate documents
and documents with a single word. Table 3 lists the
number of documents and distinct words, and the
average length (i.e., number of words) of documents
of the three collections after preprocessing.

We first evaluate the batch BTM on the Question
and Tweets2011 collections, since the Weibo collec-
tion is so large that the cost of running the batch
algorithms is prohibitively expensive. We then use
the Tweets2011 and Weibo collections to examine the
performance of the two online algorithms, since they
have timestamps with the posts, and can be treated
as text streams.

Baseline Methods. For batch BTM, we compared
it with three typical methods for short text topic
modeling nowadays:

• Mix denotes the mixture of unigrams model
which assumes each document only exhibits a
single topic.

3. http://zhidao.baidu.com
4. http://trec.nist.gov/data/tweets/

Fig. 2. Document length (i.e., number of words) distri-
bution of the three collections.

• LDA denotes the standard LDA model imple-
mented by Gibbs sampling5.

• LDA-U aggregates all the posts of a user into a
longer pseudo-document, and then applies LDA
on these pseudo-documents.

Besides, we also compared the performance of the
two online algorithms of BTM with the online LDA,
referred as iLDA, a major competitor on large scale
datasets. For online LDA, we chose the version im-
plemented by incremental Gibbs sampler [16]. Since
its effectiveness and efficiency are as good as, if not
better than, other implementations such as particle
filter [16] and online variational Bayes [37] in our
preliminary experiments. To be fair, all the methods
are implemented by Gibbs sampling in C++6. All the
experiments are carried on a Linux server with Intel
Xeon 2.33 GHz CPU and 16G memory.

The parameters α and β were tuned via grid search
on the smallest collection (i.e., Question) in our exper-
iments 7. We found when α = 0.05 and β = 0.01,
LDA almost always achieved the best performance
in the preceding experiments. For BTM and mixture
of unigrams, we found α = 50/K and β = 0.01
always works well. When comparing with the batch
algorithm, we set λ = 1 in oBTM, so that the data
in different time slices contribute equally. For oBTM,
the time slices are split by day on the two microblog
datasets. To compare the performance of the online
algorithms, we set the length of the rejuvenation
sequence |R(i)| in iBTM to be Niter, and the sliding
window length L to be |B(1)|, so that its time and
memory cost will be roughly equal to oBTM. Gibbs
sampling was run for 1,000 iterations on the Question
and Tweets2011 collections. Considering the Weibo
collection is too large, we ran 100 iterations on it.

Measures and Methodology. We aim to evaluate
the effectiveness and efficiency of the batch and online
BTM algorithms on short texts. Note that the evalua-
tion of effectiveness of a topic model is not a trivial
problem. A typical metric is the perplexity or marginal

5. http://gibbslda.sourceforge.net/
6. Code of BTM : http://code.google.com/p/btm/
7. Specifically, we first varied the parameters in {0, 0.01, 0.1, 1,

10} to find the best ones, and then fine-tuned the parameters near
these values to determine the final values of the parameters.
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TABLE 4
PMI-Scores of the batch algorithms. A larger PMI-Score indicates more coherent topics.

K 50 100
Collection Method Top5 Top10 Top20 Top5 Top10 Top20

LDA 2.15± 0.05 1.70± 0.03 1.40± 0.04 2.16± 0.04 1.71± 0.03 1.39± 0.02
Question Mix 2.28± 0.06 1.82± 0.03 1.43± 0.03 2.34± 0.05 1.80± 0.04 1.40± 0.03

BTM 2.34± 0.05 1.88± 0.03 1.48± 0.03 2.42± 0.06 1.89± 0.05 1.49± 0.03
LDA 2.61± 0.06 1.93± 0.04 1.77± 0.02 2.64± 0.06 2.02± 0.04 1.78± 0.02

LDA-U 2.63± 0.02 2.14± 0.06 1.77± 0.02 2.72± 0.02 2.20± 0.02 1.79± 0.01
Tweets2011 Mix 2.72± 0.07 2.19± 0.03 1.83± 0.02 2.85± 0.04 2.28± 0.02 1.83±0.02

BTM 2.74± 0.04 2.26± 0.04 1.86± 0.02 2.88± 0.02 2.33± 0.04 1.87± 0.03

likelihood evaluated on a held-out test set [7], [13],
[38], but it is not suitable for us for two reasons. First,
the marginal likelihoods of LDA and BTM are not
comparable, since LDA optimizes the likelihood of
word occurrences in documents, while BTM optimizes
the likelihood of biterm occurrences in the corpus.
Second, these metrics disconnect with our expecta-
tions of topic models [18], e.g., the interpretability of
topics and usefulness in real applications. It is argued
that topic models with better held-out likelihood may
infer less semantically meaningful topics [39]. Con-
sidering that we are often interested in two parts of
the results of topic models, i.e., the topic components
and documents’ topic proportions, we would like to
evaluate the quality of them separately.

In recent years, some automatic evaluation methods
are proposed to measure the quality of the topics
discovered. One is the coherence score [21], which says
that a topic is more coherent if the most probable
words in it co-occurring more frequently in the cor-
pus. This idea is consistent with the basic assump-
tion of BTM, i.e., words co-occurring more frequently
should be more possible to belong to a same topic.
Thus it is not surprising that BTM always obtains
better coherence scores than the baselines, as shown
in our preliminary work [29]. Another popular metric
for automatic evaluation is the PMI-Score [40], which
measures the coherence of a topic based on pointwise
mutual information using large scale text datasets
from external sources, e.g., Wikipedia and Baike8.
Since these external datasets are model-independent,
PMI-Score is fair for all the topic models. Therefore,
we exploit PMI-Score to verify the topic quality.

Given the T most probable words of a topic k,
(w1, ..., wT ), PMI-Score measures the pairwise associ-
ation between them:

PMI-Score(k) =
1

T (T − 1)

∑
1≤i<j≤T

PMI(wi, wj),

where PMI(wi, wj) = log
P (wi,wj)

P (wi)P (wj)
, P (wi, wj) and

P (wi) are the probabilities of co-occurring word pair
(wi, wj) and word wi estimated empirically from the
external datasets, respectively. For evaluation on the

8. The most popular Chinese version of Wikipedia:
http://baike.baidu.com

TABLE 5
Hashtags selected for evaluation from Tweets2011.

jan25 superbowl sotu wheniwaslittle mobsterworld jobs
agoodboyfriend bieberfact glee lfc rhoa itunes thegame
celebrity tcyasi americanidol cancer socialmedia jerseyshore
photography jp6foot7remix factsaboutboys meatschool
libra android sagittarius thissummer tnfisherman sagawards
ausopen bears weather jaejoongday skins bfgw fashion
pandora realestate teamautism travel nba football marketing
design oscars food dating kindle snow obama

Tweets2011 corpus, we compute the PMI-Score using
4M English Wikipedia articles. For the Question and
Weibo datasets, we compute the PMI-Score using 5M
Chinese Baike articles.

To measure the quality of the documents’ topic
proportions, we use document classification to see
how accurate and discriminative of the learned topical
representations from different models are. For each
document d, its topical representation is a vector
[P (z = 1|d), ..., P (z = K|d)]9. We randomly split the
dataset into training and test subsets with the ratio
4 : 1, and employed the linear SVM classifier LIBLIN-
EAR10 for classification with 5-fold cross validation.

Note that in the microblogs datasets, i.e.,
Tweets2011 and Weibo, there is no category
information for documents. Manual labeling might be
difficult due to the incomplete and informal content
of microblogs. Fortunately, some microblogs are
labeled by their authors with hashtags in the form
of “#keyword”. By investigating the data, we find
there are mainly three types of usage of hashtags: (a)
marking events or topics; (b) defining the types of
content, such as “#ijustsayin”, “#quote”; (c) realizing
some specified functions, such as “#fb” means
importing the tweet to Facebook. We manually
chose 50 frequent hashtags in type (a) as class
labels, and collect documents with these hashtags
for classification. Documents with more than one
hashtags are discarded. Table 5 lists the 50 hashtags
selected from the Tweets2011 collection.

9. In Mix, the topic posterior of a document d = (w1, ..., wn)
can be inferred using Bayes’ rule [12]: P (z = k|d) ∝ P (z =
k)

∏n
i=1 P (wi|z = k).

10. http://www.csie.ntu.edu.tw/˜cjlin/liblinear/
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7.2 Evaluation of Batch BTM

7.2.1 Topic Coherence
To evaluate the quality of topics discovered, we calcu-
lated the average PMI-Score, i.e., 1

K

∑
k PMI-Score(k),

for each method. Table 4 lists the results on the
Question and Tweets2011 collections with the number
of most probable words T ranging from 5 to 20. We
can see that BTM outperforms all the other methods
consistently, and the improvement over LDA is signif-
icant (P-value< 0.01)11. Mix also produces better top-
ics than LDA, but the improvement is less significant
than BTM. LDA-U improves LDA moderately on the
Tweets2011 collection, but surprisingly falls behind
Mix. The results show that BTM can discover more
coherent topics than the other three methods. Mean-
while, LDA cannot learn the topics very well from the
short texts, and aggregating documents cannot fully
resolve the sparsity problem.

We further investigated the content of the topics
for qualitative analysis. Due to space limitation, we
randomly drew two common topics existing in all the
results of the methods using the strategy described in
[41] for illustration. For each topic, we list its 20 most
probable words, which are most representative for a
topic. Besides, we also investigated 20 less probable
words12 in these topics to examine the coherence of a
topic more comprehensively.

The two topics are about “job” and “snow”, as listed
in Tables 6 and 7. In the tables, the italic words are
not directly relevant with “job” or “snow” judged by
human. In Table 6, we can easily identify that these
topics are about job from the top words for each
method. However, in LDA, there are some words,
such as “web”, “website”, and “google”, more related
to the website topic, rather than job. The results in
LDA-U and Mix seem a little better than LDA, but still
include a few of less relevant words such as “website”
and “www”. While in BTM, the 20 most probable
words are more prominent and relevant about “job”.
For the less probable words, we find LDA includes
the least words about “job”. On the contrary, BTM
includes more relevant words about “job” than the
others, showing that the topic discovered by BTM
is more coherent. The same phenomenon can be ob-
served in Table 7. The above results indicate that the
topics discovered by BTM are more prominent and
coherent than the other methods over short texts.

7.2.2 Document Classification
Figure 3 shows the classification results on the Ques-
tion and Tweets2011 collections. We find that 1)
BTM always dominates the two baselines in the two

11. We conducted two-sample T-test on the PMI-scores evaluated
over different runs of LDA, denoted as SLDA, and BTM, denoted
as SBTM , with null hypothesis H0: SLDA < SBTM .

12. We simply select the words ranked from 1001 to 1020 in
descending order of probability in the topic for illustration.

Fig. 3. Comparison of classification performance w.r.t.
different numbers of topics on (a) the Question and (b)
Tweets2011 collections.

Fig. 4. Comparison of N -term topic model (NTM)
trained over (a) the unweighted N -terms, (b) the
weighted N -terms.

collections significantly (P-value < 0.01)13. 2) Mix
outperforms LDA on the Question collection, but
falls behind LDA on the Tweets2011 collection. The
possible reason is that the average document length
of the Question collection is much shorter than the
Tweets2011 collection, and thus a document is likely
to involve one topic which fits the assumption of
mixture of unigrams. 3) The improvement of LDA-U
over LDA is not so much as shown in work [10]. This
might result from the fact that in average there are
less tweets posted per user in our dataset than theirs.
Specifically, we find that about 63.3% of users posted
only one tweet, while only 2.1% of users posted more
than 9 tweets. Thus it is not strange that aggregating
tweets by users has limited effect on topic learning.

7.2.3 Biterm VS. N -term
BTM takes each biterm as a semantic unit that ex-
hibits a single topic. A natural question is how about
taking longer term combinations, such as tri-terms,
as a semantic unit for topic modeling. To answer this
question, we extend the biterm topic model to N -term
topic models (NTM) by replacing biterm with N -term
(i.e., an unordered group of N words co-occurring in
the same document)14. In particular, when N = 2 it is
exactly the BTM; When N is equal to or larger than
the maximum length of documents in the collection,

13. We conducted two-sample T-test on the accuracies evaluated
over different runs of LDA, denoted as ALDA, and BTM, denoted
as ABTM , with null hypothesis H0: ALDA < ABTM .

14. Note here N > 1, since N = 1 means modeling all the words
in the collection as independent.
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TABLE 6
The 20 most probable words (second row) and 20 less probable words (third row) in topics about “job” from

Tweets2011. The italic words are not directly relevant with “job” judged by human.

LDA LDA-U Mix BTM
job jobs business web job jobs design manager jobs job business jobs job manager business
website google design online project web website site marketing social media sales hiring service services
marketing site blog project business service online web design website project company senior
manager search company hiring www manager blog project seo engineer management
www company service support sales services internet sales tips marketing nurse office assistant
sales services post london blog senior engineer company site hiring center customer development
nonprofit gallery announced expertise unemployed med iii understand rep industrial springfield mlm recruit oil req
presence published converting host educational fort tags sustainability rankings unemployment processing
select reps requirement mgr apps assignments labor scholarships stay single campus overview awards recruiters
territory recruiters power introduction leads github extra cheap 101 vp relationships ict finish entrepreneur comp
involved announce poster assurance avon manchester beginners colorado compliance assist 1000 alliance locations
larry dynamics feeds bristol starting automotive table face winning mechanical patent auditor

TABLE 7
The 20 most probable words (second row) and 20 less probable words (third row) in topics about “snow” from

Tweets2011. The italic words are not directly relevant with “snow” judged by human.

LDA LDA-U Mix BTM
snow car weather cold snow weather cold winter snow weather cold storm snow cold weather early
drive storm winter ice ice storm rain stay winter ice rain warm stay ready ice winter
road bus driving rain warm due car closed degrees stay sun spring storm hour hours weekend
ride traffic cars safe coming spring drive traffic safe blizzard coming wind warm late coming spring
closed due warm train safe sun blizzard city cyclone chicago freezing inches rain tired sun hot
western dmv covering a4 locations sunset drizzle australian thankful station temperature cyclone
push pulling milwaukee mississippi interstate residents stops groundhogday possibly warmth issued colder
remains pace idiots 95 portland students fireplace cleveland traveling sidewalk mood couch snows pre
commuter buick owner letting yuck ton counties signal covering predicting ten grass traveling polar outages
cta transmission cyclist counting blankets pushed meant double affect umbrella filled yawn outage
flurries camping tyre 3pm springfield venture zoo schedule blew causing flurries online gloves speed

NTM is equivalent to Mix, since all the words in a
document share the same topic.

Figure 4(a) compares the performance of NTM by
document classification on the Question collection. We
find that as N increases, the performance of NTM
decreases. This is reasonable since the assumption
that all the N words in a N -term belong to a single
topic becomes too strict when N is large. However, it
is strange that NTM even underperforms Mix when
N is larger than 3. Further investigation found that
the numbers of N -terms generated from documents
with different lengths vary greatly. Note that a docu-
ment with L words will generate

(
L
N

)
N -terms, which

grows dramatically as L increases. For example, when
N = 3, a document with 3 words will generate one tri-
term, while a document with 10 words will generate
120 tri-terms. As a consequence, N -terms generated
from lengthy documents will dominate the training
data, and thus hurt the performance.

A simple way to amend this problem is to add
a weight 1/

(
L−1
N−1

)
for each N -term, where L is the

length of its document. In this way, N -terms in longer
documents will receive a smaller weight, and the
word distribution of the corpus will stay unchanged.
We re-ran NTM over the weighted N -terms15, and

15. In the Gibbs sampling procedure, here we only need to up-
date the counts of topic assignments using the weights of biterms,
without changing the inference algorithm.

TABLE 8
Time cost (seconds) per iteration of BTM and LDA on

Tweets2011 collection.

K 50 100 150 200 250
LDA 38.07 74.38 108.13 143.47 178.66
BTM 128.64 250.07 362.27 476.19 591.24

TABLE 9
Memory cost (megabytes) per iteration of BTM and

LDA on Tweets2011 collection.

K 50 100 150 200 250
LDA 3177 5524 7890 10218 12561
BTM 927 946 964 984 1002

show its result in Figure 4(b). We can see that the
performance of NTM still decreases gradually as N
grows, but now approaches to Mix. Compared with
Figure 4(a), we can see that the performance of NTM
is improved substantially by using the weighted N -
terms when N > 2. However, the improvement is
slight when N = 2, since the number of biterms
generated from documents with different lengths do
not vary much.

7.2.4 Efficiency Comparison

For efficiency comparison, we list the average run-
ning time (per iteration) of BTM and LDA in our
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TABLE 10
PMI-Scores of the online algorithms. A larger PMI-Score indicates more coherent topics.

K 50 100
Collection Method Top5 Top10 Top20 Top5 Top10 Top20

iLDA 2.53± 0.04 2.00± 0.05 1.59± 0.03 2.50± 0.04 1.97± 0.05 1.55± 0.02
Tweets2011 oBTM 2.63± 0.03 2.13± 0.03 1.80± 0.02 2.72± 0.03 2.16± 0.03 1.80± 0.02

iBTM 2.72± 0.03 2.17± 0.02 1.83± 0.02 2.71± 0.03 2.18± 0.02 1.83± 0.04

iLDA 2.37± 0.05 1.95± 0.02 1.69± 0.02 2.43± 0.05 1.90± 0.02 1.70± 0.03
Weibo oBTM 2.49± 0.04 2.02± 0.02 1.75± 0.04 2.50± 0.03 1.95± 0.02 1.74± 0.04

iBTM 2.48± 0.05 2.01± 0.02 1.74± 0.03 2.54± 0.04 1.95± 0.02 1.75± 0.05

Fig. 5. Examples of topic evolution discovered by iBTM from the (a) Tweets2011 and (b) Weibo collections.

experiments on the collection Tweets2011 in Table 8.
We can see that the running time of BTM is always
about 3 times of LDA over different topic numbers.
Table 9 shows the overall memory cost of BTM and
LDA on the same collection. We observe that the
memory required by LDA rapidly increases as the
topic number K grows, which is more than 10 times of
BTM when K is larger than 200. As opposed to LDA,
the memory required by BTM grows very slowly.
With further investigation, we find the major part of
memory cost of BTM is to store the biterms, which is
not sensitive to the topic number K. We also found
similar results from the Question collection (Note that
the results are not shown here due to space limitation).

7.3 Evaluation of Online Algorithms of BTM

7.3.1 Topic Coherence

To evaluate the topic quality of online algorithms, we
compare the average PMI-Scores of the three models,
i.e., oBTM, iBTM and iLDA, on Tweets2011 and Weibo
collections. The results are shown in Table 10. We
find that the PMI-Scores of oBTM and iBTM are very
close, and both of them outperform iLDA consistently.
Meanwhile, by comparing oBTM and iBTM, we found
no dominant results between them.

We also find that the online algorithms of BTM
can capture the topic evolution in text streams. Fig-
ure 5 (a) illustrates an example about the topic of
2011 Academy Awards (also called Oscars Awards)
in Tweets2011 collection (K=50). Below the curve, we
presented the 5 most probable words at different time
points. We observe that this topic reaches its peek

of interest on January 25, when the nominees were
announced. In the next few days, the interest de-
creased until Jan 31, when the nominated movie “The
King’s Speech” won the Screen Actors Guild Awards.
Figure 5 (b) provides another example from the Weibo
collection (K=100)16, and the topic is about college
education. This topic became popular from August
to September in 2011, when the college admission
carried on. Additionally, this topic also emerged in
June 2012 since the college entrance examination was
taken place in that period.

7.3.2 Document Classification

We further compare the classification performance
of the online algorithms on Tweets2011 (K=50) and
Weibo (K=100) collections with respect to the number
of days processed, depicted in Figure 6. In this Figure,
“Batch BTM” denotes running a batch BTM over
data received up to time t. Due to the expensive
computational cost of the batch BTM, we only run the
batch algorithm up to 80 days on the Weibo collection.
From Figure 6, we have the following observations.
Overall, the accuracy of oBTM and iBTM are close
to the batch BTM, but consistently higher than the
accuracy of iLDA. With more data received, oBTM
and iBTM improve their performance substantially
at the beginning, and then become stable gradually.
In contrast, the accuracy of iLDA does not increase
steadily, or even decreases in some cases. This phe-
nomenon was also found in [16], yet it seems to be
worse on short texts. Comparing iBTM with oBTM,

16. The 5 most probable words are translated from Chinese.
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Fig. 6. Comparison of classification performance of online algorithms on the Tweets2011 and Weibo collections.

Fig. 7. Time and memory cost comparison on the
Tweets2011 collection.

we find iBTM works slightly better than oBTM in this
task, indicating that processing the data in sequential
order might better fit the text stream data.

7.3.3 Efficiency Comparison
To demonstrate the efficiency of the online algorithms,
we plot the time and memory cost of the batch BTM,
iLDA, oBTM, and iBTM in Figure 7 on Tweets2011
dataset with K = 50. We can see that both the time
and memory cost of the three online algorithms stay
constant as more data received, while oBTM and
iBTM cost less memory than iLDA. In contrast, the
cost of batch BTM increases linearly as the time slice
t grows. The results are consistent with the complexity
analysis in Table 2. It demonstrates that the two online
algorithms of BTM can be efficiently employed to
learn topics from large datasets.

8 CONCLUSION

Topic modeling over short texts is an increasingly
important task due to the prevalence of short texts
on the Web. Compared with normal texts, short texts
bring severe sparsity problems for conventional topic
models. As the first attempt, we propose a novel
topic model for general short texts, namely the biterm
topic model (BTM). BTM can well capture the topics
within short texts by explicitly modeling word co-
occurrence patterns in the whole corpus. Besides, we
also introduce two online algorithms for BTM, which
are efficient to handle large scale datasets. Experi-
mental results on real-word short text datasets show
that BTM can learn higher quality topics, and better

infer the documents’ topic proportions than state-of-
the-art methods. Besides, BTM is simple and easy to
implement, and also scales up well via the proposed
online algorithms. All these benefits make BTM a
promising tool for content analysis on short texts for
various applications, such as recommendation, event
tracking, and text retrieval, etc.
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