Supplemental Material of “BTM: Topic Modeling over Short
Texts”

1 Derivation of P(z;|z_;, B) in Gibbs sampling
Using the chain rule, the conditional distribution can be rewritten as:
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In Eq.(1), P(B|z) can be obtained by integrating out ®:
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where I'(+) is the standard Gamma function?!, Ny|k is the number of times word w assigned to topic
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k, and n.; = ZZ;V:1 Nw|k- P(2z) can be obtained by integrating out :
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and P(B_;|z_;) , P(z_;) can be worked out in the same way:
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IPlease refer to http://en.wikipedia.org/wiki/Gamma_function. Particularly, when x is a positive integer, the
Gamma function is defined as I'(z) = (z — 1)!



where n_; . is the count that does exclude biterm b;. Considering that the Gamma function satisfies
I'(xz 4 1) = 2I'(x), and n), = n_; . + 2, thus we have

Cngp +WB) = (n_i.p + WB+1)(n_j . + WB(n_j . + WB). (6)
By replacing terms in Eq.(1) with those in Eqgs.(2-6), we obtain the final conditional distribution:
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Acknowledgement: In the published version of both our TKDE’14 and WWW?’13 papers,
(n—i .k + WpB + 1) in the denominator in right hand was mistakenly written as (n_; ., + Wp).
Thanks to Konishi Takuya point out it.

2 Derivation of the estimation of ¢;,, and 0; in Gibbs sam-
pling

Given the hyperparamters o and S, biterm set B and their topic assignments z, we can derive
the probability of the parameters ® and 6 by utilizing the Bayes’ rule and Dirichlet-multinomial
conjugate property:
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where vector n = {n;}}_,, vector nx = {n,; }i—1, Zo and Zg, are normalization factors, Dir(:)
denotes the probability density function of a Dirichlet distribution.
Note that the expectation of the Dirichlet distribution Dir(x|e) is E(z;) = —<7+—. Based on
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Eqgs.(7-8), we estimate ¢y, and 6 using their expectations:
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