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Abstract

Much research in recent years has focused on spoken lan-
guage understanding (SLU), which usually involves two
tasks: intent detection and slot filling. Since Yao et al.(2013),
almost all SLU systems are RNN-based, which have been
shown to suffer various limitations due to their sequential na-
ture. In this paper, we propose to tackle this task with Graph
LSTM, which first converts text into a graph and then utilizes
the message passing mechanism to learn the node representa-
tion. Not only the Graph LSTM addresses the limitations of
sequential models, but it can also help to utilize the seman-
tic correlation between slot and intent. We further propose a
context-gated mechanism to make better use of context infor-
mation for slot filling. Our extensive evaluation shows that the
proposed model outperforms the state-of-the-art results by a
large margin.

Introduction

Spoken language understanding (SLU) is an essential part
of dialog system. It usually involves two tasks: intent de-
tection (ID) and slot filling (SF). Typically, ID is regarded
as a semantic utterance classification problem, and differ-
ent classification methods can be applied (Haffner, Tur, and
Wright 2003; Tiir et al. 2011; Deng et al. 2012). Meanwhile,
SF is usually treated as a sequence labeling problem. Pop-
ular approaches to perform SF include support vector ma-
chines (SVMs) and conditional random fields (CRFs) (Laf-
ferty, McCallum, and Pereira 2001).

Yao et al.(2013) adapted RNN language models to per-
form SLU, outperforming previous CRF-based models by
a large margin. RNN-based methods (including LSTM and
GRU) have since defined the state-of-the-art in SLU research
(Mesnil et al. 2015; Liu and Lane 2016; Zhang and Wang
2016; Goo et al. 2018; Niu et al. 2019).

Despite their success, these RNN-based models have been
shown to suffer various limitations. Firstly, their inherently
sequential nature precludes parallelization within training
examples (Vaswani et al. 2017). Secondly, local n-grams are
not fully exploited in their models. In SLU, slots are not only
determined by the associated items, but also local context.
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Utterance show | flights from Seattle to San Diego
Slots (o] o] (o] B-fromloc| O B-toloc | I-toloc
Intent Flight

Figure 1: An example of SLU utterance with intent and an-
notated slots using the IOB scheme. The B- prefix before a
tag indicates that the tag is the beginning of a slot, and an I-
prefix before a tag indicates that the tag is inside a slot. An
O tag indicates that a token belongs to no slot.

As shown in Figure 1, the corresponding slot label for Seat-
tle is B-fromloc, but it could also be B-foloc, if the utterance
is transformed into show flights from San Diego to Seat-
tle. Thirdly, the sequential nature of RNN-based methods
leads to weaker power in capturing long-range dependen-
cies, which accounts for a large portion of SF errors (Tiir,
Hakkani-Tiir, and Heck 2010).

In this paper, we propose to use Graph LSTM to tackle
these problems. There are many variants of Graph LSTM
(Liang et al. 2016; Peng et al. 2017; Zayats and Ostendorf
2018; Song et al. 2018; Zhang, Liu, and Song 2018). In this
paper, we choose the S-LSTM (Zhang, Liu, and Song 2018)
because it is ideally suited for this task.

The main idea of S-LSTM is to model the hidden states
of all words simultaneously rather than sequentially, hence
can solve the non-parallelization problem. Specifically, the
S-LSTM views the whole sentence as a single graph, which
consists of word-level nodes and a sentence-level node.
These nodes are updated simultaneously through message
passing mechanism. Since message passing is conducted be-
tween consecutive word-level nodes, and between sentence-
level node and each word-level node, both local n-grams and
long-range dependencies are better captured.

Compared to other variants of Graph LSTM, the S-LSTM
has a special sentence-level node, making it ideally suited to
utilize the semantic correlation between slot and intent. We
note that intent and slot are not independent but intrinsically
correlated. As the example shown in Figure 1, an utterance
is more likely to contain departure and arrival cities if its
intent is to find a flight, and vice versa. For joint ID and
SF, we use the final word-level nodes of S-LSTM for slots



prediction and the final sentence-level node to predict intent
(See Figure 2). The two kinds of nodes are updated based
on the value of each other at each time step, and changes
in the word-level nodes (slot nodes) would lead to a cor-
responding change in the sentence-level node (intent node),
and vice versa. In this way, the semantic correlation between
intent and slot is explicitly modeled by the S-LSTM through
its message passing mechanism.

To further improve SF performance, we employ a context-
gated mechanism on top of the Graph LSTM. Specifically,
we first employ a convolutional unit for modeling local
context. Inspired by the Inception (Szegedy et al. 2016;
Lin et al. 2018) architecture widely used in Computer Vision
(CV), our convolutional unit is capable of extract n-grams
of different sizes. Besides, a multi-head self-attention unit is
used to model the global context. The self-attention mech-
anism has become an integral part of compelling sequence
modeling in various tasks, allowing modeling of dependen-
cies without regard to their distance. The two units are com-
bined to compute a context gate, which is used to modify the
slot vectors for the final prediction.

To sum up, our contributions are threefold:

1) To the best of our knowledge, we are the first to intro-
duce the Graph LSTM structure into the SLU area. The pro-
posed model outperforms state-of-the-art results by a large
margin.

2) Our model offers a new approach to model the semantic
correlation between intent and slot.

3) We propose a context-gated mechanism that consid-
ers both local and global context, which substantially con-
tributes to SF performance.

Model

Figure 2 gives an overview of our proposed model. Given
a sequence of words (w1, ...,wy,) in an utterance, we first
transform them into word embeddings, (e1, ..., €, ), and then
input these embeddings into the Graph LSTM at each time
step. After T' steps, we use the word-level nodes to predict
slot labels and the sentence-level node for intent prediction.
Throughout the paper, we will use the two pairs of items,
word-level nodes and slot nodes, and sentence-level node
and intent node, interchangeably. For SF, we further add a
context gate to improve our model’s ability to utilize local
and global context information. The output of our model is
a sequence of slots labels (y3, ..., y2 ), plus the intent y* of
the whole utterance. A detailed description is given below.

Input Encoding

To obtain robust word representations, we map each word
to a vector using the pretrained ELMo embeddings (Peters
et al. 2018), which have shown superior performance in a
wide range of NLP tasks. The ELMo embeddings are to-
tally character-based, allowing the network to utilize mor-
phological clues to form robust representations for out-of-
vocabulary (OOV) words, hence are especially suited for
this low data regime.

Graph LSTM

> flight

“'

context gate concat conv unit

self-attention unit

ERSTE

O ... O B-fromloc O .. I-toloc

Figure 2: An overview of our proposed model. The Graph-
LSTM views the whose sentence as a single graph S and
uses message passing mechanism to learn the node repre-
sentation. After 7" time steps, we use the final word-level
node hzT to predict the ¢4, slot label and the sentence-level
node g7 to predict intent (where T is hyperparameter). For
SF, a context gate, which consists of a convolution unit and
a self-attention unit, is further added on top of the Graph
LSTM to capture local and global context information.

Graph LSTM

There are many variants of Graph LSTM. In this paper, we
choose the S-LSTM (Zhang, Liu, and Song 2018) as the
backbone of our model. We first describe the basic structure
of S-LSTM and then analyze the strengths of using S-LSTM
for this task.

S-LSTM views the whole sentence as a single graph S,
which consists of word-level nodes h; and a sentence-level
node g. Formally, the graph state at time step ¢ is represented
as:

St:<h§7h§7"'7h;)gt> (])

The S-LSTM updates its node representation using mes-
sage passing mechanism. As show in Figure 2, the graph
state transition from S*~! to S* consists of node state tran-
sitions from h! ™! to h! and from g*~! to g*. At each time

step, the value of h! is updated according to e;, hij, hfl
hf;% and ¢g' 1, together with their corresponding cell values.

Formally:
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where W,,U,,V, and b, are model parameters (xz €
{7;7 0, lv r, fa S, U})

Note that there are more control gates in S-LSTM than in
LSTM. These gates control information flow from ¢! and e;
to ¢! . Specifically, i} controls information from the input e;;
It and 7 control information from the left context cell ¢/}

and the right context cf;i respectively. ff, as in LSTM, is

the forget gate that control information flow from ¢}~ Lost

is the sentence gate that controls information from sentence
cell value ct~!. The values of these control gates are nor-
malized by a softmax function and then used as weights to
obtain the new cell value ¢! and finally the word-level node
ht (Zhang, Liu, and Song 2018).

The sentence-level node g¢ is updated based on all these
word-level nodes:
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i, ffl,f; = softmax(f, ... ,ffl,f;)
b= o+ Y flod
i
g' = o' ® tanh(c}) (3)

where W,,U, and b, are model parameters (zr €
{g, f, 0}). Note that for conciseness, we here abuse the no-
tation by utilizing the same notations as Equation 2, though
the sentence-level node uses a different set of parameters
from the word-level nodes.

Since the message passing between word-level nodes is
only between neighbouring ones, we can regard this setting
as adopting a 1-word window. A wider window size x may
help to capture larger n-grams as well as expedite informa-
tion flow. To achieve this, we may modify Equation 2, inte-
grating additional context words to &!, with extended gates
and cells. For example, with a window size x = 2, & =

t—1 2t—1 3t—1 3t—1 3t—1
[hz 27hz l’h h’z+1’hz+2]

After T' time step, we use the word-level nodes AT and
the sentence-level node ¢g” to predict slot and intent respec-
tively. At each time step, the slot nodes (h”) and intent node
(g7 are updated based on the value of each other. Changes
in slot nodes would lead to a corresponding change in the
intent node, and vice versa. In this way, the semantic corre-
lation between slot and intent is explicitly modeled.

By employing S-LSTM for SLU, we also improve the
model’s ability to extract n-grams. From Equation 2, we
can see that the S-LSTM allows bi-directional information
flow at each word simultaneously. At each time step, each
slot vector captures an increasing larger n-gram context. Be-
sides, since the word-level nodes also get information from
the sentence-level node, which stores global information, the
model’s ability to capture long-range dependencies gets im-
proved.

Context-Gated Mechanism

As we have mentioned, slots are determined not only by the
associated items, but also by context. Although the Graph
LSTM already has certain ability to capture this information,
we find that adding a context gate to explicitly utilize it leads
to better performance. The context gate is composed of a
convolution unit and self-attention unit. These two units help
us to utilize local and global context, respectively.
Convolution Unit - Similar to images, language also con-
tains local correlation, such as the internal correlation of
phrase structure. To capture this information, we employ 1-d
convolution unit on top of the S-LSTM. Convolutions create
representations for local n-grams, which is equal in size to
the filters. Formally, a convolution block is computed as:

conv; = ReLU (WC {hiT_k/z, e hiT+k/2] + bc) 4)

where W, and b, are parameters; k is the filter size.

However, choosing the right filter size for the convolu-
tion operation is hard. Inspired by the Inception architecture
(Szegedy et al. 2016; Lin et al. 2018), we have filters of mul-
tiple sizes operate on the same level to capture different local
n-grams, yielding three different representations of the pre-
vious layer, noted as conv!, conv? and conv? respectively.

These vectors are concatenated and then linearly trans-
formed to the same dimension as the previous layer. For-
mally,

2 = [conw}; conv?; convi|W, 5)
where W, is model parameter.

Self-Attention Unit - Sometimes the disambiguating
words are out of the current n-gram context. For example, in
the following utterance (Tiir, Hakkani-Tiir, and Heck 2010):

Find flights to New York arriving in no later than next
Saturday

A 6-gram context is required to determine that Saturday
is an arrival date. Many of the erroneous cases of SF are
caused by this kind of long-range dependencies, as pointed
out by (Tiir, Hakkani-Tiir, and Heck 2010).

To tackle this challenge, we further implement a self-
attention (Vaswani et al. 2017) unit on top of the convolu-
tion unit. An attention function maps a query and a set of



key-value pairs to an output. The output is computed as a
weighted sum of the values, where the weight assigned to
each value is computed by a compatibility function of the
query with the corresponding key. Formally,

Q T
Attn(Q, K, V) = softmax

(@ ) ( NG
where Q, K and V are packed queries, keys and values, and
dy, is the dimensions of keys.

For self-attention, all of the keys, values and queries come
from the same place, in our cases, the S-LSTM’s final word-
level nodes h”. In this way, dependencies in the utterance
can be modeled without regard to their distance.

Vaswani et al.(2017) further proposed a multi-head self-
attention mechanism, which can learn diverse representa-
tions of the input. Following their approach, we first project
the d,,odei-dimensional queries, keys and values h times
with different linear projections to dj, dj and d,, dimensions
respectively. We then perform the attention function on each
of these projected vectors, resulting in d,-dimensional out-
put values, which are concatenated and once again projected,
yielding the final values. Formally,

WV (6)

Multi(Q, K, V) = [heady, ..., heady,]W°  (7)

head; = Attn(QWS, KWX, vwY) 8)

where the projections are parameter matrices WiQ €
R%modet X dk , WiK € R%moderxdy ; WiV € R9moderXdv gpd
WO e RhvXdmodel

Finally, the self-attention unit takes as input the output
of the convolution unit and results in the final context gate
value Z, which is used to modify k7 for the final prediction
of slot labels:
Multi(z, z, 2) 9)

hi =hl ©a(%) (10)

where o is the sigmoid function and ® is the element-wise
product.

Task Learning

The softmax function is applied to KT and g" with linear
transformations to give the probability distribution y; over
the ¢-th slot labels and the distribution y“ over the intent

labels. Formally,
y$ = softmax(Wp,hl + by,) (11
y" = softmax(W, g* + by,)

where W,,,, W,,, b, b,, are model parameters.

The next step is to define the loss function for our net-
works. We use U to denote the utterance, [ and [* to denote
the ground truth label of slot and intent. The cross-entropy
loss for ID and SF is computed as:

LY = —["logy" (12)

Lo ==Y I logy; (13)
i=1

Snips | ATIS
Vocabulary size | 11241 | 722
Training set 13084 | 4478
Validation set 700 500
Test set 700 893
# Slot 72 120
# Intent 7 21

Table 1: Statistics of Snips and ATIS datasets

where n is the length of each utterance, which can vary
among the training samples.

The training target of the network is to minimize a united
loss function:

L= Z(ZS,I’“,U)GD(aﬁs + ﬁu) (14)

where D denotes the whole dataset; a is a weight factor to
adjust the importance of the two tasks.

Experiments
Datasets

To fully evaluate the proposed model, we conducted experi-
ments on the Snips and ATIS datasets. The statistics of these
two datasets are shown in Table 1.

Snips - The Snips dataset was created by snips.ai (Coucke
et al. 2018). It is in the domain of personal assistant com-
mands. Compared to the ATIS corpus, it is more compli-
cated in terms of vocabulary size and the diversity of intent
and slots. There are 13,084 utterances in the training set and
700 utterances in the test set, with a development set of 700
utterances. There are 72 slot labels and 7 intent types. The
diversity of intent and slots is an important feature of Snips
dataset. Intents in ATIS are all about fight information, while
Snips contains intents like RateBook and GetWeather that
come from totally different topics. Goo et al.(2018) first ex-
ploited this dataset and reported results for models that had
achieved state-of-the-art performance on ATIS, along with
their own results.

ATIS - The Airline Travel Information Systems (ATIS)
(Hemphill, Godfrey, and Doddington 1990) dataset has long
been used as benchmark in SLU. There are some variants
of the ATIS dataset. In this work, we use the same one as
used in Goo et al.; Niu et al.(2018; 2019). There are 4,478
utterances in the training set, 500 in the valid set and 893
in the test set, with a total of 120 distinct slot labels and 21
different intent types.

Evaluation Metrics

In this paper, we adopt three mainstream evaluation metrics:

SF - We evaluate the system’s performance on SF using
the F1 score, which is defined as the harmonic average of
the precision and recall.

ID - The metric for ID is classification accuracy. Some
utterances in the ATIS dataset have more than one intent la-
bels. Some researchers (Liu and Lane 2016; Li, Li, and Qi
2018) count an utterance as a correct classification if any
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Figure 3: Sentence-level accuracies with various window sizes and time steps on the development sets.

ground truth label is predicted. Others (Goo et al. 2018;
Niu et al. 2019) require that all of these intent labels have
to be correctly predicted if an utterance is to be counted as a
correct classification. Since we use the same datasets as Goo
et al.; Niu et al.(2018; 2019), we adopt the latter setting for
a fair comparison.

Sent. - Following Goo et al.; Niu et al.(2018; 2019),
we also report the sentence-level accuracy, which consid-
ers both SF and ID performance. A sentence is counted as
correct if all its slot labels and intent are correctly predicted.

Implementation Details

The model was implemented in PyTorch and trained on a
single NVIDIA GeForce GTX 1080 GPU,

The dimensions of S-LSTM hidden state is set to 150. The
dimensions of ELMo embeddings are 1024. We do not up-
date ELMo representations during training to reduce train-
ing time. The batch size is set to 32. Dropout (Hinton et al.
2012) layers are applied on both input and output vectors
during training for regularization, with a dropout rate of 0.5.

We use Adam (Kingma and Ba 2015) for the training pro-
cess to minimize the cross-entropy loss, with learning rate =
1073, 81 = 0.9, B2 = 0.98 and e = 1077,

Following previous work (Zhang and Wang 2016; Li, Li,
and Qi 2018), we convert each number in the utterance to
the string DIGIT for ATIS. For Snips dataset, we set words
that appear less than two times to UNK.

We assign equal attention to ID and SF; that is, we set «
in Equation 14 to be 1.

Systems for Comparison

We compared our model against the following baselines:

Joint Seq - (Hakkani-Tiir et al. 2016) proposed a ap-
proach to jointly models SF and ID in a single bi-directional
RNN with LSTM cells.

Atten. Based - (Liu and Lane 2016) proposed attention-
based bidirectional RNN for for joint SF and ID. They ex-
plored different strategies in incorporating this alignment in-
formation to the encoder-decoder framework.

Slot-gated - (Goo et al. 2018) proposed a slot-gated
mechanism to learn slot-intent relations. They applied the

intent information for SF but the slot information was not
used for ID.

SF-ID Net. - (Niu et al. 2019) proposed an SF-ID network
to establish direct connections for ID and SF to help them
promote each other, with a new iteration mechanism inside
the SF-ID network. They also used a CRF layer to further
improve performance.

The results of baselines are taken from Goo et al.(2018)
and Niu et al.(2019) because we use the same datasets and
evaluation metrics.

Results
Development Experiments

We first use the development sets to find the optimal win-
dow size x and time step 7' of the S-LSTM. We test the
sentence-level accuracy, which considers both SF and ID
performance. The results are shown in Figure 3'.

We can see that when the number of time steps increases
from 2 to 8, the sentence-level accuracies generally increase,
before reaching a maximum value. This shows the effective-
ness of the message passing mechanism in S-LSTM state
transition. To achieve the best performance, we set y = 3
and T = 6 for the Snips dataset. For the ATIS, we set xy =3
and T = 4.

Overall Performance

The overall performance on the Snips and ATIS datasets are
demonstrated in Table 2.

On the Snips dataset, our model achieves the top per-
formance by a significant margin. Specifically, for SF, our
model achieves an F1 score of 95.30%, a significant im-
provement over previous state-of-the-art (3.07% absolute).
For ID, we get an absolute 1% improvement over the best-
reported score. For the sentence-level accuracy, our im-
provement is more striking, with over 9% absolute improve-
ment. This is because the sentence-level accuracy benefits
more from the modeling of the bi-directional correlation be-
tween slots and intent.

"Results on the development sets were obtained without ELMo
embeddings



Snips ATIS

Model SF ID Sent. SF ID Sent.
Joint Seq (Hakkani-Tiir et al. 2016) | 87.30 | 96.90 | 73.20 | 94.30 | 92.60 | 80.70
Atten.-Based (Liu and Lane 2016) 87.80 | 96.70 | 74.10 | 94.20 | 91.10 | 78.90
Slot-Gated (Goo et al. 2018) 89.27 | 96.86 | 76.43 | 9542 | 9541 | 83.73
SF-ID, SF first (Niu et al. 2019) 91.43 | 97.43 | 80.57 | 95.75 | 97.76 | 86.79
SF-ID, ID first (Niu et al. 2019) 92.23 | 97.29 | 80.43 | 95.80 | 97.09 | 86.90
Our Model 95.30 | 98.29 | 89.71 | 9591 | 97.20 | 87.57
Our Model - ELMo 93.81 | 97.71 | 85.57 | 95.84 | 96.41 | 86.23
Our Model - Context 94.56 | 97.29 | 88.00 | 95.72 | 97.09 | 86.11

Table 2: Results on the Snips and ATIS datasets (%).

Although the ATIS dataset has been well studied for Model Snips ATIS
decades and the scores of the state-of-the-art methods are SF 1D SF ID
very high, we still achieve noticeable improvement. We SF-model 94.28 | - 95.79 | -
achieve new start-of-the-art performance with an F1 score ID-model - 97.71 | - 96.64
of 95.91% and sentence-level accuracy of 87.57%, with Joint-model | 95.30 | 98.29 | 95.91 | 97.20

ID result slightly lower than the SF-First model of Niu
et al.(2019). This is understandable, because their SF-First
model actually gives high priority to ID, at the cost of SF
performance.

As such, empirical results demonstrate the effectiveness
of our proposed model on both datasets.

We also notice that the performance improvement is more
significant on the Snips dataset than on the ATIS dataset. We
suggest that this is because the Snips dataset is more diverse,
and thus the intent can provide more useful information for
slots prediction, and vice versa. As a result, our joint model
can benefit more from the modeling of the correlation be-
tween slot and intent on this dataset.

Ablation and Analysis

This subsection aims to demonstrate the relative effective-
ness of different components of our proposed model. The
results are also shown in Table 2.

ELMo - We first replaced the character-based ELMo
embeddings with non-pretrained word embeddings. On the
Snips dataset, we observed a 1.49% drop for SF and 0.58%
drop for ID. On the ATIS dataset, the performance also de-
teriorates.

The results support our claim that pretrained, character-
based embeddings are beneficial to SLU systems. Both the
Snips and ATIS datasets are small, and if we train word
embeddings from scratch the embeddings could be poorly
trained, especially for rare words. By depending solely on
word embeddings, it is also hard to exploit character-level
features like prefix and suffix. The character-based ELMo
representations, on the other hand, can make full use of
the morphological clues to form robust representations for
OOV tokens, hence are especially beneficial for this low data
regime.

We are more interested in the comparison between our
ELMo-free model and baselines. As can be seen, our model
is highly competitive even without the ELMo represen-
tations. On the Snips dataset, our ELMo-free model still
achieves state-of-the-art performance by a large margin,

Table 3: Comparison between joint model and separate mod-
els (%).

with over 5% absolute improvement on the sentence-level
accuracy. On the ATIS dataset, we also achieve the best
F1 score, with intent accuracy lower than Niu et al.(2019).
These results suggest the superior performance of our model
lies more in the model design than in the pretrained ELMo
embeddings.

Context-Gated Mechanism - We then removed the con-
text gate from our model. As can be seen, the F1 scores drop
0.74% and 0.19% for Snips and ATIS datasets, respectively.
Interestingly, we found that the intent accuracies also deteri-
orated on both datasets. We suggest this might be due to the
semantic correlation between slot and intent, and the deteri-
oration of SF performance leads to a corresponding drop of
ID accuracy. We can also observe that the sentence-level ac-
curacy drops significantly, with 1.71% and 1.46% absolute
drop on the Snips and ATIS datasets, respectively.

The results buttress our claim that the context gate mech-
anism is beneficial to SLU performance. We further note
that both the convolution unit and self-attention unit are non-
sequential, which match well with the Graph LSTM.

Joint Model vs Separate Model

One of the main claims of this paper is that the correlation of
slot and intent is explicitly modeled by our model and hence
contributes to both tasks. To further examine this claim, ex-
periments were designed to compare the joint model with
the separate models. The joint model is our proposed model
in Figure 2, while the separate models follow the basic struc-
ture, but focus on only one task. For example, the ID-model
learns only ID and does not predict slot labels. In this way,
the separate models cannot benefit from the modeling of the
semantic correlation between intent and slot. The results are
demonstrated in Table 3

We can see that the joint model generally performs better



Model F1
DBN (Deoras and Sarikaya 2013) 95.30

CRF (Mesnil et al. 2015) 95.16
RNN (Mesnil et al. 2015) 96.29
GRU-CRF (Zhang and Wang 2016) | 96.89
Our model 97.28

Table 4: F1 scores on the ATIS dataset with named entity
(NE) feature.

than the two separate models. Specifically, on Snips dataset,
the joint model beats the SF-model by 1.02% absolute F1
score, and ID-model by 0.58%. On the ATIS dataset, our
joint model outperforms the SF-model by 0.12% F1 score
and the ID-model by 0.56%.

Not only the results back our claim, they also suggest that
the more diverse dataset can benefit more from the model-
ing of the semantic correlation between slot and intent, be-
cause ID and SF can provide more useful information for
each other. This shows the potential of our model to be ap-
plied in open-domain area.

Named Entity Feature

The ATIS dataset also has extra named entity (NE) feature
marked via table lookup, with which the slot labels are much
easier to predict. These features were utilized by some of the
previous researchers (Deoras and Sarikaya 2013; Mesnil et
al. 2015; Zhang and Wang 2016). To make a comprehensive
comparison, we also report the SF results with NE features
for ATIS.

As can be seen in Table 4, our model beats all the reported
results under this setting, with 0.39% absolute improvement.
Compared with results from Table 2, we can see that the
named entity feature does significantly improve SF perfor-
mance, with F1 score arising from 95.91% to 97.28%.

Related Work

SLU - In recent years, RNN-based methods have defined the
state-of-the-art in SLU research. Yao et al.(2013) adapted
RNN language models to perform SLU, outperforming pre-
vious CREF result by a large margin. They attributed the su-
perior performance to the task-specific word representations
learned by the RNN. Mesnil et al.(2015) investigated dif-
ferent kinds of RNNs for SF and showed that Elman RNN
performed better than Jordan RNN. Yao et al.(2014) used a
deep LSTM architecture and investigated the relative impor-
tance of each gate in the LSTM by setting other gates to a
constant and only learning particular gates.

Joint Method - There have been many attempts to learn
ID and SF jointly. Xu and Sarikaya(2013) first proposed a
joint model for ID and SF based on convolutional neural
network (CNN). Liu and Lane(2016) proposed an attention-
based neural network model and beat the state-of-the-art
on both tasks. Zhang and Wang(2016) used a GRU-based
model and max-pooling method to jointly learn these two
tasks. Hakkani-Tiir et al.(2016) adopted a multi-domain,
multi-task sequence tagging approach. Kim, Lee, and

Stratos(2017) proposed the OneNet to jointly perform do-
main, intent and slot prediction. Wang, Shen, and Jin(2018)
proposed a bi-model that enables interaction between ID and
SE.

Despite their success, most of these models did not ex-
plicitly model the interaction between ID and SF and only
tied these two tasks through a joint loss function. Goo et
al.(2018) pointed this problem out and tackled it with a gat-
ing mechanism, leveraging intent vector to influence slots
prediction. This idea was later followed by other researchers
(Li, Li, and Qi 2018).

However, in their models, the influence is only unidirec-
tional, meaning that they only use the intent vector to influ-
ence slot prediction, but not the other way around. By con-
trast, our model enables bidirectional interaction between ID
and SF via the S-LSTM. The similar idea has also been pro-
posed by Niu et al.(2019). However, to model the correlation
between ID and SF, their model relies on two addition sub-
nets, while our model can handle it on the fly thanks to the
message passing mechanism of S-LSTM.

Graph LSTM - There are many variants of Graph
LSTM. Liang et al.(2016) proposed a Graph LSTM net-
work to address the semantic object parsing task. It used
the confidence-driven scheme to adaptively select the start-
ing node. Zayats and Ostendorf(2018) adapted Tree-LSTM
to graph. However, in their model, each node in the graph
has at most two incoming edges. Peng et al.(2017) proposed
another variant of the Graph LSTM based on the relation
extraction task. Zhang, Liu, and Song(2018) proposed the
S-LSTM to improve text encoding.

Of all these variants of Graph LSTM, we believe the S-
LSTM (Zhang, Liu, and Song 2018) is especially suited for
this task. The most prominent feature of S-LSTM is that it
has a special sentence-level node, which stores the informa-
tion of the whole sentence, making it especially suited to
utilize the bi-directional correlation between slot and intent.
To the best of our knowledge, we are the first to introduce
the Graph structure into the SLU area.

Conclusion

In this paper, we propose a new model to jointly learn SF and
ID based on the Graph LSTM. To the best of our knowledge,
we are the first to introduce such a graph-based model into
this area. Besides, our model effectively utilizes the seman-
tic correlation between slot and intent. To further enhance
our model’s ability to utilize local and global context, we
employ a context gate on top of the S-LSTM, which is com-
posed of a convolution unit and a self-attention unit. Exten-
sive evaluation shows that our model beats the state-of-the-
art model by a large margin.
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